stali — static linux

Anselm R Garbe

anselm @ garbe.us

Abstract

stali is a new and unique linux distribution that
consists of static executables only (with some ex-
ceptions).

stali proves that statically linked executables start
faster, are smaller, use lesser memory and are eas-
ier to update.

Keywords: linking; static linking; linux; stali

1 Introduction

stali[1] is a very simple linux distribution, it
consists of a minimalist init system, a radically
cleansed file system structure, a hand selected
collection of the best open source tools for each
task, and does not need package management.

Its primary focus is the creation of small and fast
static executables, including a small monolithic
linux kernel that needs to be customised for each
specific system.

stali uses its own unique build chain around the
Plan 9 make tool mk[6]. Its build chain com-
pletely disregards the usual configure[4]-based
approach to build open source packages, mainly
because this approach is too slow and unflexible
for building static executables and libraries. The
build chain is the real value of stali, because it
enables developers to also cross-compile for em-
bedded devices.

2 Size

Contrary to the expectation, static executables can
be a lot smaller than their dynamic counterparts,
if one overcomes the use of bloated libraries at
linkage time.

Linking a stripped hello world program with
glibc[3] results in a 600kb executable. Linking
it with uClibc[2] results in a 7kb executable.
Statically linking stali’s default Korn shell[5]
(ksh) with uClibc results in a 170kb executable;
linking it with glibc dynamically results in a
234kb executable. This example scales for the
whole core userland of stali. Nearly all static ex-
ecutables are smaller than their dynamic counter-
parts in common linux distributions.

Another aspect of static executables is that they
are size-optimised at linkage time. Static executa-
bles do not contain complete static libraries but
just those objects from a library archive that ex-
pose required symbols. Dynamically linked exe-
cutables or libraries can’t be size-optimised in a
similar fashion.

3 Memory footprint

Due the observation that static executables are
generally smaller, the overall memory footprint is
less. stali does not have dynamic libraries that are
loaded into memory — even if only tiny portions
of a dynamic library are used.

Since the size of static executables outnumbers
the theoretical overhead of statically linked li-
brary functionality, the aspect of cloned objects
is neglectible.

4 Performance

The only measurable difference between static
and dynamic executables is the start up time.
Benchmarks published on the stali website[1]
show that a performance gain of 400% and more
1s common to static executables. The slow start

of dynamic executables is related to the system’s
symbol resolution.

5 Security

Several people argue (with implicitly requiring
ABI-stability) that dynamic executables benefit
from security fixes in dynamic libraries they de-
pend on. This is true, however the opposite is also
true: if there is a security flaw in a dynamically
linked library, all programs that depend on it are
affected; whereas statically executables are not.
Another argument often heard is that static library
functions have predictable addresses, whereas dy-
namic linking provides the ability of address ran-
domization. There are two answers to this.

The first is: Technically it is possible to use
platform-independent code in static executables
and assuming the kernel supports address ran-
domization for executables we have a similar fea-
ture.

The second is: Inreality, address randomization is
predictable and we usually see the same addresses
when a dynamic library is loaded or has been pre-
loaded reproducibly.

Apart from that stali tends to link against libraries
with low footprint, such as uClibc instead of glibc
when possible. This leads to a higher probability
of lesser vulnerabilities in the dependent library,
simply because lesser code contains fewer bugs.

6 Durability

Static executables are durable and will run on the
same platform in a similar kernel environment for
years. They aren’t affected from ABI changes like
dynamic executables.

7 Updates

Updating a static userland only requires to replace
the static executables in the filesystem. There are
no side-effects of already running processes like
in a dynamic userland.

8 Conclusion

stali proves that a static linux distribution pro-
vides several advantages, in particular being
smaller, consuming lesser memory, starting faster
and being more secure.

Apart from this, stali’s build chain is also interest-
ing for embedded device development and cross-
compiling.

References

[1] http://sta.li (stali website)

[2] http://www.uclibc.org/(uClibc web-

site)

[3] http://www.gnu.org/software/

libc/(glibc website)

[4] http://www.gnu.org/software/

autoconf/(autoconf website)

[5] http://en.wikipedia.org/wiki/Korn_

shell(Korn shell wikipedia entry)

[6] http://swtch.com/plan9port/man/

manl/mk.html(Plan 9 mk man page)

