

openPOWERLINK

Open Source Industrial Ethernet

CLT2010 Version V1.02 13.03.2010

Contact Details

Dipl.-Inf. Daniel Krüger

SYS TEC electronic GmbH August-Bebel-Str. 29 D-07973 Greiz

Tel.: +49 (0)3661 6279-0

Fax.: +49 (0)3661 6279-99

WWW: <u>www.systec-electronic.com</u>

Email: <u>Daniel.Krueger@systec-electronic.com</u>

Limitations of Ethernet

- Non-determinism, because of collisions
- Carrier Sense Multiple Access/Collision Detection (CSMA/CD): retransmission after random time, transmission is not guaranteed
- → Possible solution: classic fieldbusses like CAN, Profibus, LON, etc.

Limitation of classic fieldbusses

- Classic fieldbusses have a low bandwidth that is not sufficient for the higher demands of contemporary applications (e.g. for firmware updates)
- CAN: max. 1 Mbit/s
- LON: max. 78 kbit/s
- Profibus-DP: max. 12 Mbit/s
- Profibus-PA: max. 31.25 kbit/s
- → Solution: Industrial Ethernet like POWERLINK, EtherCAT, Sercos III, Profinet IRT

Applications of Microcontroller Networks

- Central/decentral control or data capturing of decentral processes
- Data exchange between sensors and actuators
- Data capturing over large distances (>1km)
- Reducing the complexity of the wiring
- Typical applications:
 - industrial automation
 - automotive engineering, shipbuilding
 - building control, alarm systems
 - power plants
 - measurement engineering
 - ...

What is POWERLINK?

- Industrial Ethernet Fieldbus Protocol
- Based on IEEE 802.3u Fast Ethernet
- CANopen over Ethernet
- Real-time capable via slot communication
- Master-Slave Protocol
- Master = Managing Node (MN)
- Slave = Controlled Node (CN)
- Hot plugging
- Direct cross-traffic

What is openPOWERLINK?

- Open Source implementation of POWERLINK
- Development done by SYS TEC electronic GmbH
- Currently supported target platforms:
 - > Linux
 - > Windows
 - bare-metal (OS-less)
- License: BSD
- Pure software-based solution on standard Ethernet controllers, but hardware-acceleration possible

How does POWERLINK work?

Slot Communication Network Management

Demo (Wireshark)

SoC Frame

SoC: Start of Cycle synchronization event

PReq Frame

PReq: Poll Request from MN for specific CN contains PDO payload

PRes Frame

PRes: Poll Response from CN / MN contains PDO payload and current NMT state

SoA Frame

SoA: Start of Asynchronous assigns asynchronous phase to specific node

ASnd Frame

ASnd: Asynchronous Send TCP/IP NMT commands, SDO, IdentResponse, StatusResponse

OSI Model

Systems House for Distributed Automation Solutions

Topology

Possible Topologies:

- Star
- Line (daisy chain)
- Tree
- Mixed

Connectors:

- RJ45
- M12

Equipment:

- Hubs
- Switches

Node Addressing Scheme

- Unique Node-ID for each node in the network
- Node-ID of MN: 240 = 0xF0
- Node-ID of CNs: 1 − 239
- Node-ID of Gateway: 254
- Node-ID of diagnostic device: 253

$$CN 48 = 0x30$$

Performance

- 0.1 µs system synchronization
- 100 µs cycle time
- up to 240 nodes in one network
 - > 480 synchronized axes
 - > 460.000 digital I/O data points
- Unlimited extension
 - > 100 m between any two nodes
 - Larger distances using fiber optics

Boot-up

Demo

NMT States and Status LED

- Initialising
- Reset Application
- Reset Communication
- Reset Configuration
- Not Active
- Pre Operational 1
- Pre Operational 2
- Ready-To-Operate
- Operational
- Basic Ethernet
- Stopped

Object Dictionary (3)

- Access rights: ro, rw, wo, const
- Device and application profiles of CANopen are used
- Overall layout according to specification:

Index	Object
0x0001 – 0x0FFF	Declaration of Data Types (formalism)
0x1000 – 0x1FFF	Communication Profile Area
0x2000 - 0x5FFF	Manufacturer Specific Profile Area
0x6000 – 0x9FFF	Standardised Device Profile Area
0xA000 – 0xBFFF	Standardised Interface Profile Area
0xC000 – 0xFFFF	Reserved for further use

Object Dictionary (4)

- XML Device Description (XDD):
 - ➤ Describes the structure of the OD (including default values) of a device type (e.g. I/O module from manufacturer ABC)
 - ➤ Is the basis for configuration tools
- XML Device Configuration (XDC):
 - ➤ Contains the current configuration of the OD of a specific device (e.g. I/O module at the left drive in the machine)
 - Generated by configuration tools
 - ➤ Concise Device Configuration (CDC): binary form of XDC
 - ➤ Used by the Configuration Manager (CFM) to configure the nodes in the network at run-time

OD Communication Profile

- 0x1000: NMT_DeviceType_U32
- 0x1006: NMT_CycleLen_U32
- 0x1018: NMT_IdentityObject_REC (VendorID, ProductCode, RevisionNo, SerialNo)
- 0x1400 .. 0x14FF: PDO_RxCommParam_XXh_REC
- 0x1600 .. 0x16FF: PDO_RxMappParam_XXh_AU64
- 0x1800 .. 0x18FF: PDO_TxCommParam_XXh_REC
- 0x1A00 .. 0x1AFF: PDO_TxMappParam_XXh_AU64
- 0x1CXX: Error counters
- 0x1F82: NMT_FeatureFlags_U32
- 0x1F98: NMT_CycleTiming_REC

CANopen Device/Application Profiles

- CiA 401: Generic I/O modules
- CiA 402: Drives and motion control
- CiA 404: Measuring devices and closed-loop controllers
- CiA 406: Encoders (rotating and linear)
- CiA 417: Lift control systems
- CiA 422: Municipal Vehicles (e.g. garbage trucks)
- CiA 445: RFID reader
- CiA 447: Special-purpose car add-on devices (e.g. in taxis)

Process Data Object (PDO)

- For exchange of process data between actuators, sensors and control
- Abstraction layer between source and sink (virtual cabling via variable mapping)
- Up to 1490 Bytes per Ethernet frame
- Structure is stored in OD and can be configured via SDO
- Communication model: Producer-Consumer(s)
- Cyclically transmitted in isochronous phase
- Direct cross-traffic between CNs is possible

PDO Mapping

Managing Node 0xF0

Process Variables:

Master to slave Process Variables:

0x2001/1 Output 1, 8 Bit, 0xAB 0x2001/2 Output 2, 8 Bit, 0xCD

Tx PDO Mapping Parameter:

	1 1 U	
0x1A00/0	NrOfEntries: 2	
0x1A00/1	1. Mapped Object:	\ \
	0x0008000000012001	LL
0x1A00/2	2. Mapped Object:	\downarrow
	0x0008001000022001	LL

Tx PDO Communication Parameter:

0x1800/0	NrOfEntries: 2
0x1800/1	NodelD: 0x02
0x1800/2	MappingVersion: 0x00

0x6200/1	Output 1, 8 Bit, 0xCD
0x6200/2	Output 2, 8 Bit, 0xAB

Rx PDO Mapping Parameter:

0x1600/0	NrOfEntries: 2
0x1600/1	1. Mapped Object:
	0x0008000000026200LL
0x1600/2	2. Mapped Object:
	0x0008001000016200LL

Rx PDO Communication Parameter:

0x1400/0	NrOfEntries: 2
0x1400/1	NodeID: 0x00
0x1400/2	MappingVersion: 0x00

Resulting PReq frame to Node 0x02:

SrcNodeld	DstNodeld	MappingVersion	PDO Length	PDO Payload
0xF0	0x02	0x00	3	0xAB 00 CD

openCONF Demo

Service Data Object (SDO)

- For configuration of the nodes, to get access to remote ODs
- Transported in asynchronous phase via ASnd frames or encapsulated in UDP datagrams
- Transportation in isochronous phase via container in PDO is possible too, but currently not implemented
- Consists of 2 Layers:
 - Sequence Layer: Peer-to-Peer transport stream with acknowledgement
 - Command Layer: Client-Server communication

SDO Aborts

- SDO transfers can be aborted by both parties
- Common SDO abort codes
 - > 0x05040000L: Timeout occurred
 - > 0x06010000L: Unsupported access of object
 - > 0x06010001L: Read of write-only object
 - > 0x06010002L: Write to read-only object
 - > 0x06020000L: Object does not exist
 - > 0x06090011L: sub-index does not exist
 - > 0x08000000L: General error

openPOWERLINK

- Implements Communication profile EPSG DS 1.1.0
- Data link layer and NMT state machine for Controlled and Managing Nodes
- SDO via UDP and EPL ASnd frames
- Dynamic PDO mapping
- User-configurable object dictionary
- Supports the EPL cycle features async-only CN and multiplexed CN
- Implemented in plain ANSI C
- Modular software structure for simple portability to different target platforms
- Supports target platforms with and without operating system
- Event driven Communication Abstraction Layer (CAL)
- Provides Generic API for user-application

Software Structure

Directory Structure

Edrv	Ethernet driver implementations
EplStack	EPL protocol stack core components
Example	Example and test projects
Include	Generic header files
Include/kernel	Header files for EPL kernel part
Include/user	Header files for EPL user part
ObjDicts	Sample Object dictionaries
SharedBuff	Shared buffer implementation for CAL and
	frame queues
Target/ARCH/OS/C	Target dependant files for architecture
	ARCH, operating system OS and compiler C

Introduction into demo project

- Makefile
- demo main.c
 - EplApiInitialize();
 - > EplApiLinkObject();
 - EplApiExecNmtCommand(kEplNmtEventSwReset);
 - > EplApiShutdown();
 - > AppCbEvent()
 - > AppCbSync()
- Build and run the project

Extensions and future enhancements?

- Multiplexed CNs (currently only in CN stack supported)
- PResMN
- PResChaining (implementation on-going)
- Future enhancements:
 - High Availability/ Redundancy
 - Safety/ openSAFETY protocol stack

Terms and Abbreviations

- EPL: Ethernet POWERLINK
- EPSG: Ethernet POWERLINK Standardization Group
- NMT: Network Management
- OD: Object Dictionary
- PDO: Process Data Object
- SDO: Service Data Object
- CN: Controlled Node (Slave)
- MN: Managing Node (Master)

References

- [1] EPSG Draft Standard 301 Ethernet POWERLINK Communication Profile Specification, Version 1.1.0, Ethernet POWERLINK Standardisation Group, 2008
- [2] Ethernet POWERLINK Standardisation Group, http://www.ethernet-powerlink.org/
- [3] openPOWERLINK, http://openpowerlink.sourceforge.net/
- [4] openCONFIGURATOR, http://sourceforge.net/openconf
- [5] CAN in Automation (CiA), http://www.can-cia.org/

The End

Any questions about POWERLINK or openPOWERLINK?

Thanks for your attention!