
GitLab Copyright

Chemnitz Linux Days 2025, 20250322
Recording

Efficient DevSecOps
workflows with reusable
CI/CD Components

https://streaming.media.ccc.de/clt25/relive/158

GitLab Copyright

Staff Developer Advocate
@dnsmichi

Michael Friedrich

https://www.linkedin.com/in/dnsmichi/
https://gitlab.com/dnsmichi
https://crashloop.social/@dnsmichi
https://bsky.app/profile/dnsmichi.bsky.social

GitLab Copyright

Where are you in your DevSecOps journey?

Milestones

Assign Issue

Approval

Merge
Accepted

Release

Epics

Create a merge request

Automated TestPush Code Scan Collaboration & review

Deploy

Issues

GitLab Copyright

What is the most inefficient task?

Milestones

Assign Issue

Approval

Merge
Accepted

Release

Epics

Create a merge request

Automated TestPush Code Scan Collaboration & review

Deploy

Issues

GitLab Copyright

Efficient
DevSecOps?

GitLab Copyright

● Testing
● Continuous Integration CI
● Continuous Deployment CD
● Vulnerability Scanning
● Monitoring/Observability
● Infrastructure as Code
● Platform engineering

DevSecOps is all about speed

GitLab Copyright

How fast are you able to

● Create a CI/CD pipeline with multiple steps
● Document the usage
● Modularize pipelines
● Create reusable modules for your team
● Optimize and improve modules without

breaking everything

Image generated with https://gitlab.com/gitlab-da/projects/go-excusegen which
itself is based on the XKCD comic at https://xkcd.com/303/

CI/CD Pipelines

https://gitlab.com/gitlab-da/projects/go-excusegen
https://xkcd.com/303/

GitLab Copyright

How to discover?

Internet search
LLM / Docs Chat
Developer portal
Ask your peers

How to use?

Documentation
Wiki

Read the code

How to share?

Publish
Versioning

Share with your
peers

Discover, use, share

https://docs.gitlab.com/user/gitlab_duo_chat/examples/#ask-about-gitlab

GitLab Copyright

More CI/CD
inefficiencies

GitLab Copyright

Traditional Pipeline Composition in GitLab CI/CD
Include CI/CD definitions from other repositories

Local to the project

Template: SAST

Project ref file in a
different group

GitLab Copyright

Traditional Pipeline Composition in GitLab CI/CD
Frequent problem: stage mismatch in consumer and include 😫

GitLab Copyright

Traditional Pipeline Composition in GitLab CI/CD
Solution 1: add the stage 🤨

MR
https://gitlab.com/gitlab-da/use-cases/cicd-components-catalog/migration/inc
lude-stages-rust-gitlab-api/-/merge_requests/2

https://gitlab.com/gitlab-da/use-cases/cicd-components-catalog/migration/include-stages-rust-gitlab-api/-/merge_requests/2
https://gitlab.com/gitlab-da/use-cases/cicd-components-catalog/migration/include-stages-rust-gitlab-api/-/merge_requests/2

GitLab Copyright

Traditional Pipeline Composition in GitLab CI/CD
Solution 2: override the job 🥴

MR
https://gitlab.com/gitlab-da/use-cases/cicd-components-catalog/migration/inc
lude-stages-rust-gitlab-api/-/merge_requests/2

https://gitlab.com/gitlab-da/use-cases/cicd-components-catalog/migration/include-stages-rust-gitlab-api/-/merge_requests/2
https://gitlab.com/gitlab-da/use-cases/cicd-components-catalog/migration/include-stages-rust-gitlab-api/-/merge_requests/2

GitLab Copyright

CI/CD
Components

GitLab Copyright

Streamline and automate pipeline creation
Easy to assemble pipeline components

→ consistent and repeatable workflows

Shareable
Reusable
Discoverable

→ across teams to improve collaboration and
increase DevSecOps efficiency

GitLab Copyright

CI/CD component
1. Modularized job definition
2. Documented purpose
3. Parameter specification
4. Test automation
5. Versions with traditional release/publish workflow
6. Everyone can contribute - GitLab Merge Requests

GitLab Copyright

CI/CD catalog
Collection of available CI/CD Components

1. Explorable index Single source of Truth)
2. Public or internal
3. Enables reusability

Shared ownership

1. Instance maintainers
2. GitLab maintained components
3. Components created by verified GitLab

partners
4. Community contributions

GitLab Copyright

Adoption path
Templates - Any part of CI/CD pipeline configuration (exists today)

Components - Reusable unit of pipeline configuration

Catalog - Collection of components, searchable on global instance

New component types - future

GitLab Copyright

Inside a
component

GitLab Copyright

Directory structure

Spec for metadata and inputs

Template definitions

Project in GitLab, test and release
workflows in CI/CD

CI/CD component overview

GitLab Copyright

Create and
Consume
a CI/CD
Component

GitLab Copyright

Practical Example:
Rust
Refactor Rust CI/CD config from
the blog post “Learning Rust with a
little help from AIˮ

Blog:
https://about.gitlab.com/blog/2023/08/10/learni
ng-rust-with-a-little-help-from-ai-code-suggest
ions-getting-started/
MR
https://gitlab.com/gitlab-da/use-cases/ai/learn-
with-ai/learn-rust-ai/-/merge_requests/1/diffs

https://about.gitlab.com/blog/2023/08/10/learning-rust-with-a-little-help-from-ai-code-suggestions-getting-started/
https://about.gitlab.com/blog/2023/08/10/learning-rust-with-a-little-help-from-ai-code-suggestions-getting-started/
https://about.gitlab.com/blog/2023/08/10/learning-rust-with-a-little-help-from-ai-code-suggestions-getting-started/
https://gitlab.com/gitlab-da/use-cases/ai/learn-with-ai/learn-rust-ai/-/merge_requests/1/diffs
https://gitlab.com/gitlab-da/use-cases/ai/learn-with-ai/learn-rust-ai/-/merge_requests/1/diffs

GitLab Copyright

Basic Rust component
Start at https://docs.gitlab.com/ee/ci/components/

Create a GitLab project and open the Web IDE

Directory tree

templates/ ← component type
 rust-basic.yml ← component template name (w/o .yml)
README.md ← How to use
.gitlab-ci.yml ← testing the component

https://docs.gitlab.com/ee/ci/components/

GitLab Copyright

CI/CD jobs in Rust component
MVC (minimal valuable change):

1. 💡 spec with empty inputs

2. 🌱 Two jobs: build-latest, test-latest
a. stage
b. image
c. script

3. Template name: rust-basic

4. 🤔 No optimization yet

Demo component in https://gitlab.com/gitlab-da/use-cases/cicd-components-catalog/components-templates/rust-basic

https://gitlab.com/gitlab-da/use-cases/cicd-components-catalog/components-templates/rust-basic

GitLab Copyright

Consume Rust CI/CD component
Letʼs test this first iteration.

The include keyword supports the components keyword.
The variable CI_SERVER_FQDN ensures that components can be used on any self-managed or
SaaS instance without editing.

Requires a component path:
$CI_SERVER_FQDN/namespace/component/component-template-name@tagged-version

Remember the component directory tree? Omit templates in the path.

GitLab Copyright

Dynamic inputs
spec:
 inputs:
 variable_name:
 default: variable_default_value
 description: variable_description

Usage:

$ inputs.variable_name]]

Example: Define default stage names for
build/test
https://docs.gitlab.com/ee/ci/yaml/inputs.html

https://docs.gitlab.com/ee/ci/yaml/inputs.html

GitLab Copyright

Dynamic inputs - validation
Specify the component inputs

For testing, use the same stage value
build which is different from the default.

GitLab Copyright

Dynamic inputs ++
Replace latest value in job names and
images

Define the Rust version to use as input

Use image tags from
https://hub.docker.com/_/rust/tags

https://hub.docker.com/_/rust/tags

GitLab Copyright

Dynamic job names
⚡ Job names based on input

💥 Reusable components

GitLab Copyright

Optimize
CI/CD component
1. Split the single template

into job specific templates
a. build
b. test

2. Consider
a. Adding more inputs
b. Default inputs values
c. Caching

3. Avoid global settings (no
default keyword)

GitLab Copyright

Maintain CI/CD
Components
Documentation, tests

GitLab Copyright

Documentation
README.md best practices

1. Purpose of the component
2. Usage
3. Testing & Development

Inputs documentation is
automatically generated in the
CI/CD catalog

Demo component in https://gitlab.com/gitlab-da/use-cases/cicd-components-catalog/components-templates/rust-basic

https://gitlab.com/gitlab-da/use-cases/cicd-components-catalog/components-templates/rust-basic

GitLab Copyright

Testing a CI/CD component
Include the component in
CI/CD in the same project

Test different input values for
different templates

Use pre-defined CI/CD
variables

https://docs.gitlab.com/ci/components/examples/#test-
a-component

Demo component in https://gitlab.com/gitlab-da/use-cases/cicd-components-catalog/components-templates/rust-basic

https://docs.gitlab.com/ci/components/examples/#test-a-component
https://docs.gitlab.com/ci/components/examples/#test-a-component
https://gitlab.com/gitlab-da/use-cases/cicd-components-catalog/components-templates/rust-basic

GitLab Copyright

Testing with app code
Include source code,
configuration, etc.
environment in the component

Rust (run cargo init)

Cargo.toml configuration
src/main.rs source code

Advanced testing example with parallel matrix
builds in the Go component:
https://gitlab.com/components/go/-/blob/main
/.gitlab-ci.yml?ref_type=heads

https://gitlab.com/components/go/-/blob/main/.gitlab-ci.yml?ref_type=heads
https://gitlab.com/components/go/-/blob/main/.gitlab-ci.yml?ref_type=heads

GitLab Copyright

Iterate
Add more component
templates and inputs as
needed

→ run template for “cargo runˮ

Verify CI/CD pipelines

https://gitlab.com/gitlab-da/use-cases/cicd-components-catalog/components-templates/rust-basic/-/merge_requests/10

GitLab Copyright

Visibility

CI/CD Catalog

GitLab Copyright

Add Rust component to CI/CD catalog
Project > Settings >
1. Add description
2. Visibility, project features, permissions > CI/CD catalog project
3. Toggle enabled and save changes

https://docs.gitlab.com/ci/components/#set-a-component-project-as-a-catalog-project

https://docs.gitlab.com/ci/components/#set-a-component-project-as-a-catalog-project

GitLab Copyright

Release a CI/CD component
Automated in CI/CD

Automated Release notes

Published into the CI/CD
Catalog

User action: Create and push
a Git tag (semantic version)

GitLab Copyright

CI/CD
catalog

Search or go to
> Explore >
CI/CD catalog

https://gitlab.com/explore/catalog

https://gitlab.com/explore/catalog

GitLab Copyright

CI/CD
catalog

Search for the
component
name

Sort by release
date, popularity,
and more

https://gitlab.com/explore/catalog

https://gitlab.com/explore/catalog

GitLab Copyright

Component
Direction

Photo by Karsten Würth on Unsplash

https://unsplash.com/@karsten_wuerth?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/green-economy?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

GitLab Copyright

Component direction
First iteration: Templates

Next iteration: Steps for reusable job pieces

Direction: Expanding catalog resource types

Direction: Support inputs for pipelines

Direction: FY26 Pipeline Modularity

Photo by Bernard Hermant on Unsplash

https://docs.gitlab.com/ci/components/#directory-structure
https://docs.gitlab.com/ci/steps/
https://about.gitlab.com/direction/verify/component_catalog/#expanding-catalog-resource-types
https://gitlab.com/groups/gitlab-org/-/epics/16321
https://gitlab.com/groups/gitlab-org/-/epics/16739
https://unsplash.com/@bernardhermant?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

GitLab Copyright

CI/CD Steps
Steps are composable pieces of a job,
replacing the script section.
Accepts inputs, can be reused and
combined with CI/CD Components.

Status: Experiment. Add ideas & feedback.

https://docs.gitlab.com/ee/ci/steps/
https://docs.gitlab.com/ci/steps/#combine-cicd-components-and-cicd-steps
https://gitlab.com/groups/gitlab-org/-/epics/15084

GitLab Copyright

Efficiency tips

Best practices

GitLab Copyright

1. String (default)
→ stage, image, script

2. Number
→ parallel

3. Boolean
→ allow_failure

4. Array
→ needs, rules

5. Functions to manipulate values
https://docs.gitlab.com/ee/ci/yaml/inputs.html#input-types
https://docs.gitlab.com/ee/ci/yaml/inputs.html#specify-functions-to-ma
nipulate-input-values
https://docs.gitlab.com/ee/ci/yaml/#job-keywords

Input types

https://docs.gitlab.com/ee/ci/yaml/inputs.html#input-types
https://docs.gitlab.com/ee/ci/yaml/inputs.html#specify-functions-to-manipulate-input-values
https://docs.gitlab.com/ee/ci/yaml/inputs.html#specify-functions-to-manipulate-input-values
https://docs.gitlab.com/ee/ci/yaml/#job-keywords

GitLab Copyright

Dynamic inputs example
Arrays:

1. After script execution
https://gitlab.com/components/ruby

2. Cache paths
https://gitlab.com/explore/catalog/rust-ci/rust-ci

String:
1. Container image

https://gitlab.com/explore/catalog/to-be-continuous/python
2. Dynamic job name

https://gitlab.com/components/ruby

https://gitlab.com/components/ruby
https://gitlab.com/explore/catalog/rust-ci/rust-ci
https://gitlab.com/explore/catalog/to-be-continuous/python
https://gitlab.com/components/ruby

GitLab Copyright

Security best practices
For component users

1. Use pinned versions
2. Store secrets securely
3. Securely handle cache and artifacts

4. Review CI/CD component changes
5. Audit and review component source code
6. Minimize access to credentials and tokens

For component maintainers
1. Discourage using latest
2. Use two-factor authentication 2FA
3. Use protected branches
4. Review changes carefully

Photo by Michael Rodock on Unsplash

https://docs.gitlab.com/ci/components/#for-component-users
https://docs.gitlab.com/ci/components/#for-component-maintainers
https://unsplash.com/@coffeebluv?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/security-limit?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

GitLab Copyright

Benefits
Component highlights
and use cases

Photo by Tim Marshall on Unsplash

https://unsplash.com/@timmarshall?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/team-excitement?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

GitLab Copyright

Building blocks
Programming languages - lint, build, test best
practices

Efficiency best practices

Dynamic workflows

Version control, dependencies, automated
tests

Single source of Truth and Visibility

GitLab Copyright

Verified creator
components
Highlight: to-be-continuous -
Python

https://gitlab.com/explore/cat
alog/to-be-continuous/python

https://gitlab.com/explore/catalog/to-be-continuous/python
https://gitlab.com/explore/catalog/to-be-continuous/python

GitLab Copyright

Verified creator
components
Highlight: to-be-continuous -
Docker

https://gitlab.com/explore/cat
alog/to-be-continuous/docker

https://gitlab.com/explore/catalog/to-be-continuous/docker
https://gitlab.com/explore/catalog/to-be-continuous/docker

GitLab Copyright

Verified creator
components
Highlight: to-be-continuous -
Renovate

https://gitlab.com/explore/cat
alog/to-be-continuous/renova
te

https://gitlab.com/explore/catalog/to-be-continuous/renovate
https://gitlab.com/explore/catalog/to-be-continuous/renovate
https://gitlab.com/explore/catalog/to-be-continuous/renovate

GitLab Copyright

Partner
components
Highlight: Google - GKE

https://gitlab.com/explore/cat
alog/google-gitlab-component
s/gke

Learn more:
https://about.gitlab.com/blog/2024/
04/09/gitlab-google-cloud-integrati
ons-now-in-public-beta/#automate-
cicd

https://gitlab.com/explore/catalog/google-gitlab-components/gke
https://gitlab.com/explore/catalog/google-gitlab-components/gke
https://gitlab.com/explore/catalog/google-gitlab-components/gke
https://about.gitlab.com/blog/2024/04/09/gitlab-google-cloud-integrations-now-in-public-beta/#automate-cicd
https://about.gitlab.com/blog/2024/04/09/gitlab-google-cloud-integrations-now-in-public-beta/#automate-cicd
https://about.gitlab.com/blog/2024/04/09/gitlab-google-cloud-integrations-now-in-public-beta/#automate-cicd
https://about.gitlab.com/blog/2024/04/09/gitlab-google-cloud-integrations-now-in-public-beta/#automate-cicd

GitLab Copyright

Partner
components
Highlight: CodeSonar
CodeSecure - Embedded
Security scanning

https://gitlab.com/explore/cat
alog/codesonar/components/
codesonar-ci

https://gitlab.com/explore/catalog/codesonar/components/codesonar-ci
https://gitlab.com/explore/catalog/codesonar/components/codesonar-ci
https://gitlab.com/explore/catalog/codesonar/components/codesonar-ci

GitLab Copyright

GitLab-maintained
components
Highlight: Code Quality OSS

https://gitlab.com/explore/cat
alog/components/code-qualit
y-oss/codequality-os-scanner
s-integration

https://gitlab.com/explore/catalog/components/code-quality-oss/codequality-os-scanners-integration
https://gitlab.com/explore/catalog/components/code-quality-oss/codequality-os-scanners-integration
https://gitlab.com/explore/catalog/components/code-quality-oss/codequality-os-scanners-integration
https://gitlab.com/explore/catalog/components/code-quality-oss/codequality-os-scanners-integration

GitLab Copyright

GitLab-maintained
components
Highlight: OpenTofu

https://gitlab.com/explore/cat
alog/components/opentofu

https://gitlab.com/explore/catalog/components/opentofu
https://gitlab.com/explore/catalog/components/opentofu

GitLab Copyright

Use case: Hardware
in the loop
Use: GitLab CI Components for
Embedded

Learn: Embedded DevOps Workshop -
A Self-Paced POC for Refactoring to
GitLab CI and Modern Security and
Compliance

Watch: Embedded DevOps Hardware
in the CI Loop and The Transformative
Power of Sharing Work-in-Progress

https://gitlab.com/guided-explorations/embedded/ci-components
https://gitlab.com/guided-explorations/embedded/ci-components
https://gitlab.com/guided-explorations/embedded/workshops/embedded-devops-workshop-refactoring-to-ci
https://gitlab.com/guided-explorations/embedded/workshops/embedded-devops-workshop-refactoring-to-ci
https://gitlab.com/guided-explorations/embedded/workshops/embedded-devops-workshop-refactoring-to-ci
https://gitlab.com/guided-explorations/embedded/workshops/embedded-devops-workshop-refactoring-to-ci
https://www.youtube.com/watch?v=F_rlOyq0hzc&t=1s
https://www.youtube.com/watch?v=F_rlOyq0hzc&t=1s
https://www.youtube.com/watch?v=F_rlOyq0hzc&t=1s
http://www.youtube.com/watch?v=F_rlOyq0hzc

GitLab Copyright

Get inspired to create your own CI/CD components:

1. Container image builds: Docker-in-Docker,
podman, Kaniko

2. Programming language workflows including
best practices

3. Platform engineering, developer experience
4. Continuous releases and deployments
5. IaC and Observability
6. Security scanning, Supply Chain Security,

SLSA, SBOM
7. Embedded, automotive, telco, aerospace,

medical

More use cases

GitLab Copyright

Everyone can
contribute
Create

Photo by Johannes Andersson on Unsplash

https://unsplash.com/@thejoltjoker?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/pipeline-lightspeed?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

GitLab Copyright

Start today
Create a component project

Convert CI/CD templates into
components

Replace hardcoded values with
inputs

Development guide for GitLab CI/CD
components

Join our community: Forum, Discord

https://docs.gitlab.com/ci/components/#create-a-component-project
https://docs.gitlab.com/ci/components/#convert-a-cicd-template-to-a-component
https://docs.gitlab.com/ci/components/#convert-a-cicd-template-to-a-component
https://docs.gitlab.com/ci/components/#replace-hardcoded-values-with-inputs
https://docs.gitlab.com/ci/components/#replace-hardcoded-values-with-inputs
https://docs.gitlab.com/ee/development/cicd/components
https://docs.gitlab.com/ee/development/cicd/components
https://about.gitlab.com/community/
https://forum.gitlab.com/
https://discord.gg/gitlab/

GitLab Copyright

1. CI/CD Templates are deprecated?
a. No. They are used within component types, too.

2. Where to start with components?
a. Start where pipelines failing for 1+ teams
b. Review more pipelines and find common patterns

and usages
c. Contribute to the GitLab CI/CD Catalog locally and

at GitLab
d. Share your feedback in GitLab.com epics and

issues!
3. Donʼt get confused about steps, they are still experimental
4. Visit the GitLab blog - useful resources like FAQs and more
5. More interest? Follow this epic

Meme by David Bell on Twitter/X

FAQ

https://docs.gitlab.com/ee/ci/steps/
https://about.gitlab.com/blog/2024/08/01/faq-gitlab-ci-cd-catalog/
https://gitlab.com/groups/gitlab-org/-/epics/7462
https://unsplash.com/@thejoltjoker?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://twitter.com/i/bookmarks/all?post_id=1303858170155081728

GitLab Copyright

Migration
workshop
Optional: Go CI/CD template migration
practical example

GitLab Copyright

Migration workshop: Go
Analyze existing CI/CD template

Split jobs into specific component templates

Optimize with dynamic inputs

Test component with source code

Release component

GitLab Copyright

1. The image configuration is global.
→ Needs to be moved into job definition.

2. The format job runs multiple go commands,
including go test
→ Split the jobs into format and test

3. The compile job runs go build.
→ Rename job.

Source:
https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Go.gitlab-ci.yml

Analyze existing CI/CD template11

https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Go.gitlab-ci.yml

GitLab Copyright

1. The stage attribute is hardcoded.
→ Should be configurable

2. The image attribute hardcodes latest tag.
→ Make it a configurable input.

3. The compile job uses a hard-coded binary
output path.
→ Make it configurable.

Source:
https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Go.gitlab-ci.yml

Define optimization strategies12

https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Go.gitlab-ci.yml

GitLab Copyright

1. One template file for each job: format, build, test
2. Create a project, initialize a Git repository
3. Create additional best practice files

Create template directory structure13

GitLab Copyright

1. Define inputs: job_name, stage,
go_image, binary_directory

2. Add dynamic job name definition,
using inputs.job_name

3. Assign stage to inputs.stage
4. Use image from inputs.go_image
5. Create binary directory from

inputs.binary_directory, add to go
build

6. Define the artifacts path to
inputs.binary_directory

Inspect the Git history in https://gitlab.com/components/go to follow the learning iterations.

CI/CD job templates: build14

https://gitlab.com/components/go

GitLab Copyright

1. Follow the same pattern:
2. Inputs: job_name, stage and go_image

a. Default values, description
3. Dynamic job name, stage, image

CI/CD job template: format15

Inspect the Git history in https://gitlab.com/components/go to follow the learning iterations.

https://gitlab.com/components/go

GitLab Copyright

1. Follow the same pattern:
2. Inputs: job_name, stage and go_image

a. Default values, description
3. Dynamic job name, stage, image

CI/CD job template: test16

Inspect the Git history in https://gitlab.com/components/go to follow the learning iterations.

https://gitlab.com/components/go

GitLab Copyright

1. Edit .gitlab-ci.yml and add tests
2. Specify multiple input values for

job_name, stage, image
a. Use parallel:matrix for Go

images
3. CI_SERVER_FQDN automatically

detects your instance URL

Test CI/CD component17

Inspect the Git history in https://gitlab.com/components/go to follow the learning iterations.

https://gitlab.com/components/go

GitLab Copyright

The go commands expect a Go project
with go.mod, main.go

$ go mod init <project URL without https://>

💡 Tip: Use GitLab Duo Code Suggestions and
use comments as prompt instructions to generate
code.

Add Go source code18

Inspect the Git history in https://gitlab.com/components/go to follow the learning iterations.

https://docs.gitlab.com/ee/user/ai_features.html#code-suggestions
https://gitlab.com/components/go

GitLab Copyright

1. Commit & push the
change

2. Add docs best practices
for Usage and Inputs

3. Release the component
4. Consume the component

in staging/production

https://docs.gitlab.com/ee/ci/components/#best-practices

Verify results, add documentation19

https://docs.gitlab.com/ee/ci/components/#best-practices

GitLab Copyright

DevSecOps
Efficiency
with CI/CD
components

GitLab Copyright

DevSecOps efficiency with a little help
from CI/CD components

● Reusable, self-contained building blocks for GitLab CI/CD
● Visible and discoverable
● Share “best practiceˮ pipeline jobs
● Formalized, and testable input parameters
● Create and consume
● Maintain, test and release
● Inspire collaboration and transparency

Photo by Diego PH on Unsplash

https://unsplash.com/@jdiegoph?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/idea?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

GitLab Copyright

Slides

Resources

https://dnsmichi.click/cicdcomp-clt2025

